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Summary. The standard carrier model for ion transport by a one-to-one mechanism 
is developed to predict the time-dependent currents for systems that are symmetrical at 
zero applied potential. The complete solution for ions and carriers bearing any charge is 
derived by assuming that the concentration of ions in the membrane is low and either 
that the applied potential is small or that the applied potential affects equally all of the 
association and dissociation reactions between the ions and the carriers. The response to 
an abruptly applied potential is then given by the sum of a constant and two declining 
exponential terms. The time constants of these relaxations are described by the equations 
derived for neutral carriers by Stark, Ketterer, Benz and L~iuger in 1971 (Biophys. J. 
11 : 981). The sum of the amplitudes of the exponentials for small applied potentials obeys 
a relation like that first derived by Markin and Liberman in 1973 (Biofizika 18:453). For 
small applied potentials expressions are also provided for the voltage transients in 
charge-pulse experiments and for the membrane admittance. 

In the simplest version of the model, a carrier transports a substrate 
by binding it on one side of the membrane and crossing to the other side 
where the substrate is released. The carrier is then free either to pick up 
another passenger or to return to the original side. The model can be 
taken literally as in its application to the ion carriers, valinomycin and 
trinactin, or formally as when it is used to describe Patlak's (1957) 
variable conformation pore. It is assumed in either case that the carriers 
spend most of the time in just four states, i.e., adsorbed on one side or 
the other of the membrane either free or complexed, with the negligible 
remaining time spent in the transitions between these states. The rate of 
each of the transitions is proportional to the concentration of carriers in 
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the original state, independent of the concentration in the final state, and 
dependent in some manner on the applied potential. 

The equations that describe this carrier model have already been 
solved for the steady-state current when only one type of ion is present 
that can use the carrier (Hladky, 1972; Stark, 1973). However, a com- 
parably general solution is not available when the currents vary with 
time. The principal purpose of this paper is to provide a solution for 
transients which is valid over a wide range of carried ion concentrations 
and which allows for the effects of the applied potential on the rates of 
all the steps in the transport cycle. As Markin and Lieberman (1973) and 
Ciani (1976) have also seen, when the applied potential is small, the 
solution for a symmetrical system can be obtained by expressing the 
concentrations of the carriers and complexes as power series in the 
potential. For sufficiently small potentials, the fluxes and hence the 
current may be calculated from the first-order terms in these series. The 
resulting expression for the time-dependent current in a voltage clamp is 
easily converted into a solution for the admittance of the membrane. 

The Model and the Current in the External Circuit 

The model, described in Fig. 1, has been discussed in many reviews 
(e.g., Haydon & Hladky, 1972; Ovchinnikov, Ivanov & Shkrob, 1974; 
Eisenman et al., 1973; Markin & Chizmadzhev, 1974; LeFevre, 1975; 
McLaughlin & Eisenberg, 1975; and Hladky, 1979). Any step in the cycle 
can transfer charge part of the way across the membrane. Even the 
transfer of a neutral carrier or complex across the membrane can entail 
the rotation of its own dipole moment  and of dipoles in the membrane 
material, thus producing a charge displacement. It is therefore con- 
venient to adopt a symbol for the amount  of charge which moves in the 
external circuit as a result of each of the transitions which can occur. 
Thus at constant applied potential, transfer of a complex from left to 
right moves 7 charges through the external circuit, transfer of a free 
carrier moves 0 charges, formation of a complex on the left moves ~' 
charges, and dissociation of a complex on the right moves ~" charges. 
Since one complete cycle of the carrier system transfers one ion with 
charge z~ across the entire membrane, z~ charges move through the 
external circuit and 

7 - 0  +~ '+~"=z~ .  (1) 
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Fig. 1. The kinetic scheme for the standard carrier model. Adsorbed ion carrier complexes 
are present on either side of the membrane at surface concentrations N/s and N/~, 
respectively. These can cross the membrane (or undergo a conformation change exposing 
the binding site to the opposite solution) or dissociate, releasing the ion into solution. 
The free carriers present at surface concentrations N S' and Ns" , may cross the membrane (or 
undergo a conformation change exposing the binding site to the opposite solution) or 
recombine with ions to form complexes. The rate constants, the k's, depend on the 
applied potential but at constant potential not on either the concentrations or the current 

If the carrier molecules are small, are adsorbed near  the surfaces, and 

produce  only a small per tu rba t ion  of the membrane ,  4' and  4" will be 

small, while the values of ~  ~ will be a lmost  equal to the charges of 

the complex and free carrier, respectively. If, instead, the carrier spans 

the me mbra ne  and undergoes weakly potent ia l -dependent  conformat ion  

changes which expose its site to one solut ion or the other, then 7 and  

will be small and 4 ' +  4" will be a lmost  equal  to z i. At  any instant  the 
total  current  in the external  circuit is the sum of the current  in the 

absence of  any of  these transi t ions plus all the currents which flow as a 

consequence of the transitions. Thus the current  per unit  area of mem- 
brane m a y  be writ ten 

dAV+F I= - C ~ t  [4'Ji+4"J;'+?J~s+OJ~]. (2) 
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In this equation,  F is the Faraday,  C is the capacitance per unit area of 
the membrane ,  strictly with the carriers present but not undergoing tran- 
sitions, A V is the potential  difference across the membrane ,  

! t ! t / ! 

J~ = k~ a ms - k~ ~ (3) 

is the net rate of format ion of complexes on the left as moles per unit  
area per unit  t ime; 

Yi'= k D N~.'~ - k R a" N~" (4) 

is the net rate of dissociation on the right; 

t !  I I  

Jis = k'is N[s --  kis N s (5) 

is the net rate of transfer of complexes f rom left to right; and 

Js = k; N; - k;' N s' (6) 

is the net rate of transfer of free carriers from left to right. 
In order to obtain a solut ion for the current, it is necessary to 

determine how the concentrat ions of the carriers and complexes change 
with time. So long as each individual experiment  can be conducted  at 
constant  total concentra t ion of adsorbed carrier N r (i.e., the carrier is 
effectively membrane  bound)  

N; + N;' + N~s + N;;= NT (7) 

during the experiment,  and the basic equat ions may be written 

and 

dN; 
S 

d t  = J[ - Jis 

dNi ' ;  
- J i s -  Ji" 

d t  

dN;_ 
dt J; - L  

dn;' 
-Js+J;'. 

d t  

(8) 

The mathemat ica l  model  is defined by Eqs. (1)-(8), which specify how the 
various fluxes and the current depend both  on the explicitly stated 
concentrat ions of carried ions, carriers, and complexes and on the 
applied potential,  which is stated implicitly in the values of the rate 
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constants k', k", etc. 1 Markin and Liberman (1973), using a smeared 
charge model, have considered variations in the rate constants caused by 
changes in the concentration of charged carriers and complexes in the 
membrane. However, the increase in the range of concentrations ade- 
quately covered by the theory is not great (Andersen et al., 1978; Hladky 
& Tsien, 1979; see also Appendix  A) and for present purposes does not 
justify the required increase in the complexity of the model. 

Relat ions between the Constants  and the Applied Potent ial  

There are several relations between the rate constants and the poten- 
tial which can be derived from the predictions of the model when the 
current is zero in a gradient of a single species of permeant ion. Since all 
the net fluxes are then zero, each reaction and its reverse occur at the 
same rate, e.g., k 'ea 'N~=k'vN[s  , which implies under these particular 
conditions that 

k' R k'is k ;  k's'/k ~ k'i' s k' D k' s = a"/a'. (9) 

The value of the potential for which Eq. (9) is satisfied is specified by the 
Nernst equation 

a"/a' = e -z~A~ (10) 
where 

A(~ = F A V / R Z  (11) 

R is the gas constant and T is the absolute temperature. Since Eqs. (9) 
and (10) hold for arbitrary activity ratios and hence arbitrary zero- 
current potentials and in the model as it is treated here all of the 
constants are independent of the concentrations and currents, 

k' R k'is k'~ k's' / ( k' ~ k'[s k' D k's) = e -  ~ ' AS (12) 

holds for all applied potentials regardless of whether the current is zero 
or not (cf  Hodgkin & Huxley, 1952). For high concentrations of the 
adsorbed ions (see Appendix  A )  where the rate constants are no longer 
independent of the concentrations, this relation must hold when the 
current is zero, but not necessarily otherwise. 

The Nernst equation (10) is a special case of the general equation for 
equilibrium, as is also 

1 These "rate" constants simply state the assumed proportionalities between fluxes 
and concentrations. Their use does not imply acceptance of any particular theory for how 
they vary with the applied potential 
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N/] _e_AG,/R T (13) 
N/ 

S 

where A G* is the standard Gibb's free energy of transfer of a mole of 
complexes from left to right. This free energy is equal to the work done 
by the external circuit (e.g., the voltage clamp), 7FAK when a mole of 
complexes is transferred from one side of the membrane to the other. 
Thus by the reasoning used to derive Eq. (12), 

k'~ 2 k'/s = e - ' A '~ 

k;/k's'  = e -  ~ A 

and 
k R (A 4)/k D (A O) = [kR (o)/kD (o)] e- r A,~ 

kR(A O)/kD(A O) = [kR(O)/kD(O)] e+ e, A4~ 

From Eqs. (2), (12) and (14)-(17), 

k ~ ( o )  k ls(O)  k;'(o) k;(o) 
k);(o) k'/s(O) k's(O) k;(o) 

(14) 

(15) 

(16) 

(17) 

= 1. ( 1 8 )  

Comments on a General Solution 

When the current and concentrations are constant, J[= Jis= J['= -Js  
and the current is just I=ziFJis.  The steady-state solution for J~s from 
Eqs. (3)-(8) for arbitrary concentrations and applied potentials regardless 
of symmetry has been given previously (Hladky, 1972, Eq. (87); Stark, 
1973). The general solution to Eqs. (1)-(8), (12) and (14)-(17) for a 
voltage-clamp experiment could be derived by standard means. Since 
there are three independent time variables, the current at any potential 
can be expressed as 

I = I~(1  -[-~le-zlt+~2 e-Z2t-t-~ 3 e -)oaf) (19) 

The theory specifies the seven functions of the potential and the con- 
centrations in Eq. (19) in terms of four rate "constants", kR(A4), k'is(AO ), 
kR(A~b), k;(AO), and seven true constants, 2 k'D(o), k'i;(o), k;(o), 4', 7, 0, and 
Ns, all of which must be determined from the data. Thus, unless the 

2 There is no guarantee that ~',7 and 0 are constants independent of the applied 
potential. This complication does not occur in the limit of small applied potentials 
considered in later sections. It is ignored in all that follows 
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model  can be simplified a priori, it will be necessary to resort to 
numerical  curve fitting procedures to extract the rate "constants"  from 
the data. Since such analysis is possible starting from the simple linear 
differential equations (7), there is little point  in producing the complex 
general algebraic solution. 

Carrier Systems Symmetrical at Zero Applied Potential 

A dramatic  simplification in the solution occurs when the system is 
symmetrical.  It is then possible for small applied potentials to obtain the 
solution in a compact  form without  making any further assumptions.  Of 
course, less information is available if the only data analyzed are 
obtained when the system is symmetrical  and linear in the applied 
potential.  In particular, there is then no way in which to determine the 
potential  dependence of the individual rate constants. However,  the 
informat ion which is still contained in the data  is more  accessible. 

If the system is symmetrical  at zero applied potential,  then when the 
k' k' /~ ' " applied potential  is zero Ri = R i = , ~ R i ,  k i s=k i s=k i s ,  { ' = ~ " = ~ ,  etc., 

where the omission of the superscript on a concentrat ion or rate constant  
is used to designate this value. For  other applied potentials it is useful for 
each pair of functions of the potential  such as k~  and k~i to define a new 
pair such that  one, k*, expresses the c o m m o n  variation of k~ and k~ with 
potential  while the other, fiR, expresses the difference. Thus 

k~ = (k' R + k~)/2 and fR = (k~ - k~)/2; 

k* = (k' D + k•)/2 and fv  = (k))-  k);)/2; (20) 
! y !  ! y !  . 

ki* = (ki~ + kis)/2 and f~s = ( k i s -  kis)/2, 
and 

k* = (k; + k;')/2 and fs  = ( k ; -  k;')/2. 

Defining further 

K*=(k'R/k'D+k'~/k'~)/2 and 6K=(k'a/k'o-k'~/k'~)/2 (21) 

it follows that  

and 
k R = K k o + 6 K f v  (22) 

fR -- f o  K*  = fK k*. (23) 
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From these equations, Eq. (12) and Eqs. (14) (17), K*, 6K, azs/k* and cSs/k* 
may be expressed in terms of the applied potential as 

and 

K* = K cosh (~A q~) ~-K(1 + ~24 (~2/2 -~-...) 

~/~ = -- K sinh ({ A qS) _~ - K (4 A q5 + . . . )  

?)~jk* = - tanh (?A q~/2) -~ - 74 q5/2 + . . .  

6jk*  = - tanh (~ 4 ~b/2) _ - ~ 4 ~b/2 + . . .  

(24) 

(25) 

(26) 

(27) 

Since the starred functions are all symmetrical in 4q~, their series 
expansions do not contain a linear term and as A~b approaches zero they 
may be replaced by their limiting values. 

The changes in the surface concentrations are defined by 

! t !  I !  

(28) 
4 ; = N ; - N ~ ,  and 4 ' s ' = N ; ' - N  ~. 

Using these relations and Eqs. (2)-(7) 

d(4; + 4;')/dt = - ( k ;  + k* a)(4; + 4;') + 6R a ( 4 ; ' -  4;) 

+ 6~ (A is - 4'~;) + 2 k;  (K - K*) a Ns - 2 6t, 6~ Us a. 
(29) 

Whenever the applied field affects the association-dissociation re- 
actions equally on the two sides of the membrane  (6 R = cSv=0, K* = K )  
and a ' =  a", Eq. (29) becomes 

d(A; + A;')/dt= - k ; ( 1  + Ka)(A; + A;') (30) 

which has the trivial solution 

~;+A; '=0=A'~s+4'~;  (31) 

for all applied potentials regardless of the values of k*, k*, k~, 6 s and 6is. 
In general, as A~b approaches zero the terms in Eq. (29), which include 

the factors K -  K*, 6Kc5 v, 6R(A's'-- A's), and gv(A'is- A i's), all approach zero 
at least as fast as zJq~ 2. Thus Eq. (30) and its solution Eq. (31) still apply. 

in other words, for a system symmetrical at Aq~ =0,  the first order terms 

in the series expansions of N{s + N/s and N s + 2V~' are zero and as stated by 
Markin and Liberman (1973), for small A~b, N/s+N/~' and N~+N~' are 
each constant. Thus for symmetrical starting conditions and either 6R 
= 6 D = K * - - K  = 0 or small A ~b, there are only two independent variables 
which can change with time. These can be chosen as N~' S and N~' or 
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equivalent ly as A'~s and A' s. It then follows that  there are only two 

exponent ia l  terms in the t ime-dependent  solut ions for the surface con- 

centra t ions  and the observable current.  3 

The S t e a d y - S t a t e  

For  small applied potentials ,  the steady-state current  is described by 

the wel l -known expression (Markin  et  al., 1969; L~iuger & Stark, 1970; 

Hladky ,  1972; Ciani  et  al., 1975): 

Ioo= - z 2 F A ~ 2 N s k R a k ~ s k s / ( 2 k o k s + 4 k s k i s + 2 k R a k ~ s )  �9 (32) 

Alternatively,  if (~R=~)D=K * --K=0, then the solut ion for all applied 

potent ials  is [compare  Markin,  1972, Eq. (1)], 

loo = z~F 4Ns k a a(k* cS~s - k* c~s)/(2 k* k ;  + 4k*  k~* + 2 k *  ak*).  (33) 

In i t ia l  Curren t  in a Voltage C lamp  

At  t = 0 + jus t  after the abrupt  appl icat ion of a potential ,  none  of  the 
concent ra t ions  have had  t ime to change. Thus 

N;= Uf = Ns 
and 

Ni' S = N{~' = N~s = (k R a/kD) N s . 

F r o m  Eqs. (1)-(5) the external  current  is then 

(34) 

I o = 2 F N  s {~ [6 R - K f D 3  a + 7 K a 6 i s  + 06s}  (35) 

which can be rewrit ten for small  potentials  using Eqs. (24)-(27) as 

I o = - F A  dp N s {2k R a~. 2 + (k R ak is /ko)72  + k s 02}. (36) 

If  it is assumed that  

7 /0  =Zis /G (37) 

3 There are other conditions in which there arc only two independent variables. 
Thus for k; = kls = rk;'= rki' ~ = b where r and b are constants, N s + N/is constant. From Eq. 
(12) K ' = K " e  -z~4 and the binding constants on the left and right at zero potential must 
be the same. They can, however, be affected to different extents by the applied potential. 
Physically, this special case could correspond to a large "carrier" enclosing a fixed 
internal site which can be exposed to either side by conformational changes which do 
not depend on the applied field. 
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where z~s is the charge of the complex and z~ is the charge of the free 
carrier, then 

7 = Z~s (1 - 2 ~/z~) (38) 

and Eq. (36) is equivalent to Eq. (20) of Markin  and Liberman (1973), 
restricted to low concentrat ions of adsorbed ions. 

It is often convenient  experimentally to measure currents relative to 
an internal standard,  usually the steady-state current. For  small applied 
potentials 

I o = (kvk  s + 2k s k~ + k R akis ) (2k  R a k  D ~2 -Jr- k R aki~ ))2 .or_ ks kD@2) 
(39) 

Io~ z 2 k R a kis k D k s 

Thus the ratio of the currents approaches  oo as the ion activity ap- 
proaches zero, as it must,  since Ioo then approaches zero while I o 
includes a finite term due to transfer of the free carrier. The ratio goes 
th rough a m i n i m u m  for some finite activity, then approaches  infinity 
again as the ion activity becomes infinite. 

For  c~ R = 6 D = K* - K = 0 and any A ~b, 

and 

Io=2FNs[? KagG +O6 s] 

I o = (k;  k* + 2 k* k* + k~ a k*) (? k* a clis+ ~ k ;  @ 

Ioo ZikR akD(ks C~is-k* g)s) 

(40) 

(41) 

The Relaxat ion 7irne Constants 

Whenever  N s+N~'' is constant,  the solution for the changes in the 
concentrat ions will take the form 

A,is = ~o Ais  + l Ais  e -  & t + 2 Ais  e .t2t 

and (42) 
A ; = ~ A s + I A , e  &t+2Ase-;o2t. 

The fluxes can be expressed in terms of these changes using Eqs. (3)-(6) 
and thus 

I = I ~  +11 e -;'it +12 e -z2t.  (43) 

For  C ~ R = g D = K * - - K = 0  and arbitrary Aq~, Eq. (8) can be rewritten as 

dA'is/dt = k* a A's - (k* + 2 k*) A is - 2 cSis K* a N~ 
and (44) 

, :g :g r 
d A; /d t= k* A i ~ - ( k e a  + 2k~ ) A s -  2cS ~Ns 
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while if only the first order terms in A q5 are considered 

dA'is/dt = kRaA; - (kD + 2ki,) A'is + ((~K kDa -- 26i~Ka) N S 
and (45) 

d A j d t  = kvA'i~ - (kRa + 2ks) A; -(aKkDa + 265) N s. 

The t ime-dependent  terms in both  Eqs. (44) and (45) are the same as 
those in Eqs. (A-10) and (A-11) in Hladky (1975), and thus for either set 
the two reciprocal t ime constants are given by the expressions originally 
provided by Stark et al. (1971): 

and 

where 

and 

2~ = 1/'c 1 = A  - B  

2 2 = 1/r 2 = A + B 

2 A = 2 k *  +k* a+ 2k* +k* 

2B = {(2k* + k~) - 2 k* - k* a) 2 + 4k* ak*} ~. 

(46) 

Another  relation useful in later calculations is 

_ , , 4k*kis+2ki ,  kRa" 2 1 2 2 - 2 k ,  ko + * �9 , (47) 

Thus for either 6 R = @ = K * - K = 0  or small applied potentials, and 
symmetrical  initial conditions, the reciprocal t ime constants depend on 
the rate constants in the manner  stated above regardless of the charges of 
the carrier and complex. 

The Relaxation Amplitudes 

Since the objective of the derivation is to obtain expressions for the 
current, it is useful to express the various ampli tudes in terms of the 
steady-state flux, do~. At time t = 0 + the concentrat ions have not  had time 
to change and thus from Eq. (42) 

- -  ~176 A i s =  1Zlis-}-2 Ais  

and (48) 
-~176  = l A s +  2As. 

F r o m  Eqs. (6), (20) and (28), 

= 0 o  _ _ 2g;sN " (49) - J / -  2ks* As- 
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For small applied potentials this equation with Eqs. (27), (32) and (47), 
implies that 

~A s + 2A s = (Joo/2 ks) [1 + ~),~ 22/(2z f k R ak~)]. (50) 

Similarly from Eq. (5), 

and 
Jo~ =di~ = 2kis~Ais + 2gG Nis 

121 is -k 2 Ais = -(J~/2kis) E1 - y ;tz 22/(2ZikDks) ], 

(51) 

(52) 

The equations to be solved for the first-order terms are thus Eqs. (50), 
(52) and, from Eq. (44), 

and 
- - 4 1 1 A i s = k g a l A s - ( k D + 2 k i s  ) l Ais 

- -  422A is = ka a 2A s - (kD + 2 kis ) 2A is. 

(53) 

(54) 

After straightforward algebra, the solutions are 

and 

13 _ 22J~o I 2 ~ 2 , - 2 k ~  ~_~ 1 + ? k a a + 2 k s - 2 1 "  ~ 
is ,)2__,) 1 {. Zi 4kski~ z, 2k,s z i 2k~k~D J 

(55) 

2 A 21Joo f2c -2ks -2s  ~ 1 " f 2 2 - k a a - 2 k s }  
--22__41 (Zi 4kskis zi 2kis ~ . (56) is z i 2 k s k D 

For C S R = @ = K * - K = 0  and any Aq6, similar algebra leads to 

and 

22Joo f<k*(~s+(k*a+2k*-21)6is} 
tAis--22_2~ - ~ ~  [ 2kD(ks g~is-kist~s) 

(57) 

* * 2k* 21Joo - k v a s + ( 2 2 - k R  a -  s)ais'~ (58) 
221is 22__/b 1 2kD(k S g;is-kis ,}s) J 

Under either set of conditions, the current components in Eq. (43) can be 
expressed in terms of the concentration changes by using Eqs. (1)-{6), (53) 
and (54) 

11 =F [7 2k* + 2 ~ ( 2 k * -  21)+~ 2k*(k* + 2k* -21 )  ] 121is (59) 
" k * a  , 

and 
* * 2 * ] �9 2k S(k o+  k/s-22) 

I2=F 7 2 k * + 2 g ( 2 k i s - 2 2 ) + ~  k~a 2Ais" (60) 
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Equation (43) with the expressions for Ioo [Eq. (32)], 11 [Eqs. (59) 
and (55)], 12 [Eqs. (60) and (56)J and the reciprocal time constants 21 

and 22 [Eq. (46)] contains the complete solution for the t ime-dependent 
currents for a carrier system, provided the applied potential is small, the 
concentration of adsorbed ions is low (see Appendix A), and the system 
is symmetrical at zero applied potential. 

The theory for small transients in systems symmetric at A q~ = 0  thus 
connects the five experimentally determined functions of concentrat ion 

Ioo, ~1 =I1/I~, ~2=I2/Io~, 21 and 22 with seven true constants, kis, k~, kR, 
kD, ?, 0 and N s. 

The Equivalent Circuit and the Membrane Admittance 

The response [Eq. (43)] to a step change in potential for an initially 
symmetrical system is the same as that obtained from the equivalent 
circuit shown in Fig. 2. The small signal admittance of the membrane 

Goo 

~lGoo aIGoof~ 

Goo  2%o/ 2 
m~tcw,  I II 

C 

1 
Fig. 2. The equivalent circmt for the small signal response of a carrier system symmetric 
at zero applied potential is shown by the elements connected with solid lines. The 
electrical connection with the capacitance of the bare membrane is shown by the dotted 
lines. G~ is the steady-state conductance, C the bare membrane capacitance, 21 and 22 
are the reciprocal time constants seen in voltage-clamp experiments, and cfl and % are 

the respective relaxation amplitudes 
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with carrier, Y(o)), may be calculated from this equivalent circuit or with 
less effort from the transfer function for the carrier system 

@ (s) = - L [I (t)]/L [ V(t)] = - I (s)/V(s) (61) 

where L[  ] denotes a Laplace transform (Bracewell, 1965). (The minus 
sign enters as a result of the conventions that V increases to the right and 
positive current flows towards the right.) 

After defining G~ = - I o J A  V, it follows by standard procedures that 

and 
~)(s)=G~v [1 "-1-~1 S/(~1 -t-S)-~-0~2S/(~2-]- S)] 

[ _ c =  1+ j 

+jco [ C + G ~  \)~+~o2-~ )2+co21 j .  

(62) 

(63) 

Thus the low frequency conductance is just the steady-state conductance, 
the low frequency capacitance is the membrane capacitance plus the 
total charge transferred in the transient per unit voltage, the high 
frequency capacitance is the membrane capacitance, and the high fre- 
quency conductance equals the initial conductance. If a complete disper- 
sion curve can be measured, then the four voltage clamp constants and the 
steady-state conductance are obtainable from the locations of the two 
dispersions, centered at co=21 and co=)L 2, their amplitudes, and either 
the low or high frequency conductance. 

Explicit expressions in terms of the rate constants have been given by 
Aityan, Markin & Chizmadzhev (1973) for the low and high frequency 
limits of Y(co) whenever either ~ or 2 is equal to zero. The complete 
function Y(co) has been given by Markin & Chizmadzhev (1974) when- 

ever ~ = 0  and either ~ or 7 equals zeroff 

Charge Pulse Transients 

In a charge pulse experiment, the membrane is rapidly charged to an 
initial voltage, Vo=Q/C,  the external charging circuit is replaced by a 
voltage measuring circuit, and the subsequent decay is monitored as the 
charge is conducted across the membrane. While the analysis of such 

4 In Eq. (3.30) of Markin & Chizmadzhev (1974) the v r which multiplies (io)2+k~ 
+ 2 vL) and the v L which multiplies (ico2 + k 3 A + 2 v r) should be squared. 
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transients is more complicated than that for voltage-clamp experiments, 
this technique allows considerably faster transients to be measured. Benz 
and L~iuger (1976) have derived equations for neutral carriers, low 
applied potentials, symmetrical initial conditions, and only k'is and ki' s 

voltage dependent which allow the rate constants to be calculated from 
the values of the amplitudes and time constants obtained by fitting 

V(t)  = VoEa ~ e -~1'  + a 2 e ~2' + a 3 e ~3,] (64) 

to experimental data. 
For carriers charged or uncharged, symmetrical initial conditions and 

small charge pulses, the voltage vs. time will in general show three 
declining exponentials and thus the Laplace transform will be 

[ a l  a2 a3 ] 
V ( s ) = V  o s + e  + S + e e + S + e 3  . (65) 

During the decay of the voltage, the current and the potential must 
always obey 

- C a , v + I ( t ) = O  (66) 
a ~  

which, in terms of the transformed functions, becomes 

CVo CVo 
v ( s )  - 

s C + q b ( s ) - s  C + G oo [ l + O:l S/(S + )q)  + o~2s/(s + )~2) ] " 
(67) 

The two expressions for V(s) ,  Eqs. (65) and (67), must coincide for all 
values of s. The necessary and sufficient conditions are 

and 

l = a l  + a 2  + a  3 

21 +22=(e2+e3) al +(el + g3) a2+(el +e2) a3 

)~1}~2 =g2g3a 1 q-glg3a 2 q-g1 g2a3 

~.122 G oo/ C = c.18.2 ~. 3 

�9 ~ +22 +(Goo/C)(1 +~, +%)=e~ +e2 +e3 

(681 

~1 ")~2 + (Goo/C) [/~1 (1 -[- 0{2) ~- )~2 (1 --I- 0{1) ] ~-- 81 g2 -[- 8183 -I- 82 ~3. 

It is of some interest to have expressions for the amplitude and time 
constant of the final decay of the voltage when this process is much 
slower than the relaxations observed in voltage-clamp experiments (Feld- 



228 s.B. Hladky 

berg & Kissel, 1975; Feldberg & Nakadomari, 1977). If the small 
reciprocal time constant is designated e3, then for 

~3 ~ 2 1 '  J~2 (69) 
it follows that, for 

(2~ +,t2) t ~> 1, 

- d In V/dt = e 3 = 2122 Goj(Ce 1 ~'2) 

/ [  /1+~2 1-?cq\]  (70) 

which differs in the denominator from the expression given by Feldberg 
and Nakadomari [1977, Eq. (A.5)]. Since 

a3 = (2122 -- e3 (21 -~- ")~2) -~- e2) / [ (e  1 --  e3) (e2 --  ~3)] (71)  

It also follows that 

/ l + ~ 2 + l + c q  1 

and thus [Feldberg & Nakadomari, 1977, Eq. (29)] 

dln V 
dt - a3 a~~ (73) 

Reduction of the Solutions to Simpler Cases 

(1) Neutral carrier with ~ = 0 .  For small applied potentials the relax- 
ation amplitudes are given by 

22k i s~kRa+2k~-21] (  ~,~1] 2 

and (74) 
; .  k~ ( ; -2-  k~a -  2k~) ( _ ~,t2 ~ 2 

I 

For arbitrary applied potentials and cSR=cfD=K*-K=0, the ex- 
pressions are the same except that ~ = 0 and all of the rate constants are 
starred. These equations are then a minor extension of those derived by 
Stark et al. (1971). A simpler derivation and expressions valid for k*a 
+2k~s >>k;+2k* and k~+2k*>>k]a+2k* were given by Hladky (1975). 
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(2) Neutral complex with CS~s=0. For small applied potentials the 
relaxation amplitudes are 

�9 ~2ks ~ k D q - 2 k i s - 2 1  
~  ( )~2-/~ 1 } {  1 - ~j~l ~2 ziks j 

and (75) 

For arbitrary applied potentials and c5 R = 6D = K * - K  = 0, the expressions 
are the same except that ~ = 0 and all of the rate constants are starred. 

(3) Variable conformation pore with cSis=as=0. For small applied 
potentials 

)~2(2kis-,~l)()~l - 2k s) 
O~ a = 4 k i s k s ( 2 2 _ 2 1  ) 

and (76) 
21(2k,s-22)(2k~-22)  

~2 = 4kisks()~2 _21) 

(4) Interfacial equilibrium for small applied potentials. With the as- 
sumption that 

kRa+ko>>max{2kis, 2 k ~ , ~ k i s , ~ k s }  (77) 

Eqs. (46), (55), (56), (59) and (60) reduce to 

22 = k R a + k n + 2 k s k R a + 2 k D ki~ (78) 
k R a + k D 

and 

12 = - F A ~2 2N~kRa (79) 

kaaki~k~ 

k D + kis k R a 
(80) 

2kRaki, + 2k, kD 
= ( 8 1 )  

k R a + k v 

kiskRa [ ~ 4  ~ kv2k i~ -2ks  ~' kvkS ]2 
~ 1 -  kskD [z i zi ki s kRa+kD F zi kiskRa j .(82) 

For low concentrations of adsorbed ions Markin and Liberman's (1973) 
Eqs. (22)-(24) are equivalent if 7 and ~ obey Eqs. (37) and (38). 
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If ~ =0, then clearly the inequality [Eq. (77)1 used above fails. The 
reduction is, however, then even simpler, assuming only k Ra 
+kv>>max {2kz~,2ks}. The time constants are the same, c~ 2 ~0 ,  and cq is 
given by Eq. (82) with ~ = 0. 

(5) Limiting behavior as the concentration of the carried ions ap- 
proaches zero. For small applied potentials the reciprocal time constants 
and amplitudes are: 

2s= 2ks; G = (~)2 [ ks(kD + 2k~s) 2k~ kD 
[ ~ ki~(2kis+kD-2k~) 2] 

(~) 2kis+kv [~// 4d 2ki~-2k~] 
+ 2kis+k v-2k~ 4 z; } .~  ] (83) 

2is = 2kis + kv; 
2kis[O/2~kD , k k  D ]2 

~S=k-ff ~ zi2k~ }-z,k~s(2ks-2k~s-kv) 

Either relaxation may be the faster. If 2k S = 2kis + kD, then for k R a = 0, the 
two time constants are both equal to 2ks, 1,, = - F ~  2 Nsk~A~ and Iv =0. 
If ~ = 0, then G = 0 and 

2kis[l 2~ (1+ kD t ]  2 (84) 
:xi~= kDD - z~ 2kiJJ 

which is the equation derived by Ciani (1976). Eq. (A-29) from Hladky 
(1975) and the statement following it are incorrect. 

(6) Limiting behavior at high ion concentrations. For small applied 
potentials, the steady-state current, reciprocal time constants, and ampli- 
tudes are 

= - C A  4)Z?Nsks 

72 kiskga (85) 
21=2kis, ~l-z2 koks 

a2=2ks+kRa+kD, and ~2 = \ z i !  2k s. 

The amount of charge transferred in the slow transient 

21 
- FA~TaNskga/2ko, 

will be much greater than that transferred in the fast transient 

(86) 
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I~ ~2/22 = - F A  d~(2~)Z(Ns/2) (87) 

unless 7 approaches zero. 
In Eq. (A-32) of Hladky (1975) the right-hand side should be multi- 

plied by 7. 

Discussion 

This paper reports an extension of the theory for current transients 
using the symmetrical version of the standard carrier model (see Fig. 1) 
developed by Markin et aI. (1969), L~iuger and Stark (1970), Stark et al. 
(1971), Hladky (1972), Markin and Liberman (1973), Aityan et al. (1973), 
Ciani (1976) and Benz and L~iuger (1976). Stark et aI. (1971) solved the 
equations for transients, assuming that the carrier is neutral and that 
only the rate of transfer of complexes is affected directly by the applied 
field. They and others have used this solution with some success to 
interpret data obtained with the ionophores trinactin and valinomycin 
(for references, see Hladky, 1979). However, while it has been generally 
recognized that the values of the rate constants derived from the curve 
fitting would have been different if a different simplifying assumption had 
been made (Hladky, 1975; Knoll & Stark, 1975), no estimate of the size 
of these discrepancies has been available. Markin and Liberman (1973) 
developed the model to allow all the steps in the carrier process to 
depend on the potential and provided solutions for certain special cases 
at low applied potentials. However, the special conditions they imposed 
were too restrictive for their solutions to be used in the analysis of the 
data for the systems available. 

In all previous attempts to provide solutions for the time-dependent 
currents, which are more general than those derived by Stark et al. 
(1971), the membrane has been treated as a layered structure and the ions 
as usually adsorbed at the boundaries between these layers (see Markin 
& Liberman, 1973; Ciani, 1976; Benz, L~iuger & Janko, 1976). When an 
ion moves, the current in the external circuit is then calculated as the 
sum of the ionic current and the Maxwell displacement current, OD/Ot 
across any one of these layers. This method of calculation leads to a 
notation and algebraic expressions which are considerably more cumber- 
some than those provided here. Presumably for this reason, neither 
Markin and Liberman nor Ciani provide a general solution for their 
three layer carrier models. Even were such a solution available, it would 
be restricted to cases where either the free carriers and complexes adsorb 
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at the same depth into the membrane (i.e., Eqs. (37) and (38) must apply) 
or the movements of one or the other results in no charge displacement. 

In the present formulation the current is calculated not from the sum 
of the ionic and Maxwell displacement currents across a plane within the 
membrane, but rather as the sum of the charge movements caused in the 
external circuit by the changes which occur within the membrane. Thus, 
instead of specifying the location of the boundaries separating the layers, 
in this formulation one must specify the amount  of charge transferred in 
the external circuit for each type of transition which can occur. The 
principal computational advantage of this notation arises since the 
amount  of charge transferred in the external circuit for a transition 
between two states determines the amount  of work done by the external 
circuit (e.g., the voltage clamp) during the transition. This work is, in 
turn, equal to the change in standard free energy for the transition which 
determines the equilibrium constant between the states. For small ap- 
plied potentials, low concentrations of adsorbed ions and systems sym- 
metrical at zero applied potential, no further information about the 
potential dependence of the rate constants is required or available. 

The present formulation has one further advantage. The parameters 
7, ~' and ~ describe not the movements of the ions themselves, but rather 
the sum of all the movements of charge which occur as a consequence of 
the movement  of the ions and neutral molecules. As S. Simon and J. Hall 
(personal communication, see Hladky, 1979) have emphasized, the adsorp- 
tion of a large ion or ion carrier complex, or even a neutral molecule, 
will perturb the structure of the membrane in that region. Any dipole 
rotations which occur as a consequence will be seen as part of the charge 
movement. 

In the preceding sections the general solution for the current in a 
voltage clamp has been derived for low adsorbed ion concentrations, 
symmetrical starting conditions, and either low applied potentials or an 
equal effect of the applied potential on all four of the association and 
dissociation rate constants. The current after the abrupt application of a 
potential is given by 

I =Io~(1 -i-c( 1 e -t/~ +c~2 e -t/~2) (43) 

where the time constants are related to the rate constants by the 
equations (46) first derived for neutral carriers by Stark et al. (1971). The 
sum of the relaxation amplitudes, i.e., c~ 1 +c~ 2, obeys a relation [Eq. (36)] 
similar to that derived from the three-layer model by Markin and 
Liberman (1973). The individual amplitudes are stated explicitly in Eqs. 
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(55)-(60). The simpler equations which apply to a number of special cases 
have then been obtained from the general solution by reduction. Where- 
ver alternative derivations of these cases have been available, the so- 
lutions have been compared. Solutions for the voltage transient in a 
charge pulse experiment [-Eq. (65) and (68)] and for the membrane 
admittance [Eq. (63)] have been obtained from the solution for the 
current in a voltage clamp experiment [Eq. (43)] by Laplace transform. 

A similar development of the theory for lipid soluble ions is included 
in S e c t i o n / / a n d  Appendix A of Hladky (1979). 

The theory developed here makes no assumptions about the charge 
of the carried ion or the carrier. In later papers it is intended to give 
further consideration to the theory as it describes carriers of particular 
charges and the use of the theory in the analysis of experimental data. 
Application to the neutral carriers trinactin and valinomycin has been 
discussed elsewhere (Hladky, 1979) based on the assumption that move- 
ment of the free carrier does not displace charge. 

While the particular examples of carriers cited above are carriers in 
the literal, mechanistic sense, it should be emphasized that the equations 
used here describe a broader class of systems. For instance, the same 
equations could describe a large protein which contains a fixed site and 
which by changes in conformation opens a route of access from one 
solution or the other. Kinetically this system would be a carrier, mechan- 
istically it might more accurately be described as a pore. Indeed if the 
conformation change were strongly dependent on potential, it might be 
indistinguishable from a gated channel. 

I should like to thank R.H. Adrian, S. Simon, and R.Y. Tsien for helpful suggestions. 

Appendix A 

The condition that the potential seen by one ion in the membrane is 
not altered by the presence of others necessarily restricts the range of 
concentrations to which the present theory can apply. An underestimate 
of this range for carriers such as trinactin and valinomycin can be 
provided using the three capacitor model of Markin, Grigoryev and 
Yermishkin (1971) in which the adsorbed charges are assumed to be 
smeared out in two adsorption layers with charge densities o-' and a". 
The capacitance between one of these layers and the adjacent solution is 
Ca, that between the two layers is C 2. Thus, considering for simplicity 
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only one species of ion in the membrane, the extra energy of one ion 
resulting from the potential drop across C 1 due to the other adsorbed 
ions, must be small compared to kT. Since a = z F N ,  and the potential 
drop is A V = ~ / C  1, the condition required is 

R T C  1 
N ~  z 2 F 2  �9 

For C i = 4 x  10 6F/cm 2, R T / F = 2 5 m V ,  F=lOSC/mole ,  z = l ,  this con- 
dition requires that N~10-12moles /cm 2. Acceptable concentrations 
probably approach this limit closely since (i) the boundary capacitance 
has been underestimated, and (ii) the smeared charge model used in the 
calculation provides an upper limit for the possible interaction between 
the ions (see Andersen et al., 1978, and Hladky & Tsien, 1979). 

The second necessary condition is that rearrangement of the adsor- 
bed ions in response to an applied potential must not perturb the 
potential drop across the central capacitance, C 2. By elementary elec- 
trostatics, the potential drop across the center is 

C 1 2 ( z F N - a ' )  
- 

dV2 C1_}_2C 2 C1 -}-2 C 2 

where AV a is the applied potential. The change in the adsorbed charge 
due to the applied potential can be estimated from the quilibrium shift 
which would be produced by A Vo, 

z F N  - or' = z F N  tanh [zF A V j ( 2 R T ) l  

which for small potentials becomes 

z F N - ~ ' =  - z2 FZ N A V j2RT.  

Thus, again the condition to be satisfied is 

R T C  t 
2 . 

The restriction that the adsorbed ion densities must be kept below 
10-12 moles/cm 2 does not preclude a significant effect of the ion transfer 
on the membrane capacitance. Thus for low frequencies and 10-13 mo- 
les/cm 2, the additional capacitance of the membrane [Eq. (63)] is 

A Q z 2 FNA 4 
C A - A V  a -  2 A V  a - 0 . 4 g F / c m :  

which is of the same order as the capacitance of the bare membrane. 
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Superscr ip t s :  

refers to the  left; " refers to the  r ight  
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Subscr ip t s :  
is  - com p lex  
s - car r ier  
i - car r ied  ion  
R - a s soc ia t ion  ( r ecombina t ion )  
D - d i s soc ia t ion  

Symbol s :  

a~ - ion act ivi ty 

a l ,  a2, aa - r e l axa t ion  amp l i t udes  in charge  pulse  expe r imen t s  
C - m e m b r a n e  capac i ty  
d - m e m b r a n e  th ickness  
F - the  F a r a d a y  cons t an t  

Goo - s teady-s ta te ,  low vol tage  c o n d u c t a n c e  
I - cu r ren t  
Io - initial  cu r ren t  
I~o - s t eady-s ta te  cu r ren t  

J,, J/s, J~ - fluxes (moles / (area  x time)) o f  ions  across  the  b o u n d a r y  and  of  complexes  
and  free carr iers  across  the  m e m b r a n e  core  

j=l/7  
k - ra te  c o n s t a n t - o m i s s i o n  of  supersc r ip t  implies  the  value for A V =  0. See Fig. 

1. 

k* - symmet r i c  pa r t  o f  k -  e.g., k* = (k'~s + k'i;)/2 
K - equ i l ib r ium b ind ing  cons t an t  
N - surface concen t r a t i on  (moles/area) ,  see Fig. 1. 
R - gas c o n s t a n t  
s - Lap lace  t r ans fo rm var iable  
T - t e m p e r a t u r e  
t - t ime 
V, V o - po ten t i a l s  in charge  pulse  expe r imen t s  
z - n u m b e r  of  p r o t o n i c  charges  on  the  species ind ica ted  
cq, e2 - s low and  fast vo l tage  c l a m p  re l axa t ion  ampl i tudes  
%,c% - vol tage  c l amp  re laxa t ion  ampl i tudes  c o r r e s p o n d i n g  to T~ a n d  ~ 

aR, a D, a s -- a n t i s y m m e t r i c  pa r t  o f  a ra te  cons tan t ,  e.g. a~s=(k'~s-ki 's)/2 
As, A~ - changes  in surface concen t r a t i ons  
A V - app l ied  po ten t i a l  

7 - charge  d i s p l a c e m e n t  in the  t ransfer  o f  a comp l ex  
~1, ~2, ~3 - -  rec iproca l  t ime cons t an t s  in charge  pulse  expe r imen t s  
) [ 1 , 2 2  - -  SlOW and  fast vo l t age -c l amp  rec iproca l  t ime  cons t an t s  
2s, 2z~ - rec iproca l  t ime  cons t an t s  re la ted  to k, a n d  k~ regardless  o f  which  process  is 

s lower  

- charge  d i s p l a c e m e n t  in f o r m a t i o n  of  a comp l ex  (on the  left) 
- t ime cons t an t  = 1/2 
- charge  d i s p l a c e m e n t  in t ransfer  of  a carr ier  

co - angula r  f requency  
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